A System of Semilinear Evolution Equations with Homogeneous Boundary Conditions for Thin Plates Coupled with Membranes
ثبت نشده
چکیده
In this work we consider a semilinear initial boundary-value problem modelling an elastic thin plate (in the context of the so-called KirchhoffLove theory) coupled with an elastic membrane, regarding homogeneous boundary conditions. By means of the theory of strongly continuous semigroups of linear operators applied to abstract semilinear initial valued problems [16], we obtain existence and uniqueness of a weak solution which is defined in a suitable way.
منابع مشابه
Post-buckling response of thin composite plates under end-shortening strain using Chebyshev techniques
In this paper, a method based on Chebyshev polynomials is developed for examination of geometrically nonlinear behaviour of thin rectangular composite laminated plates under end-shortening strain. Different boundary conditions and lay-up configurations are investigated and classical laminated plate theory is used for developing the equilibrium equations. The equilibrium equations are solved dir...
متن کاملBuckling Analysis of Thin Functionally Graded Rectangular Plates with two Opposite Edges Simply Supported
In this article, an exact analytical solution for thermal buckling analysis of thin functionallygraded (FG) rectangular plates is presented. Based on the classical plate theory and using the principle ofminimum total potential energy, the stability equations are obtained. Since the material properties in FGmaterials are functions of the coordinates (specially the thickness), the stability equat...
متن کاملAnalytical Solution for Sound Radiation of Vibrating Circular Plates coupled with Piezo-electric Layers
In the present study, the classical plate theory (CPT) was used to study sound radiation of forced vibrating thin circular plates coupled with piezoelectric layers using simply supported and clamped boundary conditions. The novelty of the study consists of an exact closed-form solution that was developed without any use of approximation. Piezoelectric, electrical potential loaded in the transve...
متن کاملFree vibration analysis of thin annular plates integrated with piezoelectric layers using differential quadrature method
In this article, using generalized differential quadrature (GDQ) methods, free vibration of a thin annular plate coupled with two open circuit piezoelectric layers, is numerically studied based on the classical plate theory. The governing differential equations with respective boundary conditions are derived and transformed into a set of algebraic equations by implementing the GDQ rule, then so...
متن کاملAnalytical and Numerical Study on the Buckling of Homogeneous Beams Coated by a Functionally Graded Porous Layer with Different Boundary Conditions
In this paper, static buckling of homogeneous beams coated by a functionally graded porous layer with different boundary conditions is investigated based on the Timoshenko beam theory. The principle of virtual work has been used to obtain the governing equations. Two different methods, namely analyticalsolution and numerical solution are used to solve the governing equations and extract the buc...
متن کامل